

DENSELIGHT SEMICONDUCTORS PTE. LTD. 6 Changi North St. 2, S498831 SINGAPORE Tel: (65) 64154488 Fax: (65) 64157988 www.denselight.com

SPECIFICATIONS

Superluminescent LED Box

DL-BX10-CSxxxA

DenseLight Semiconductors reserves the right to make product design or specifications changes without notice.

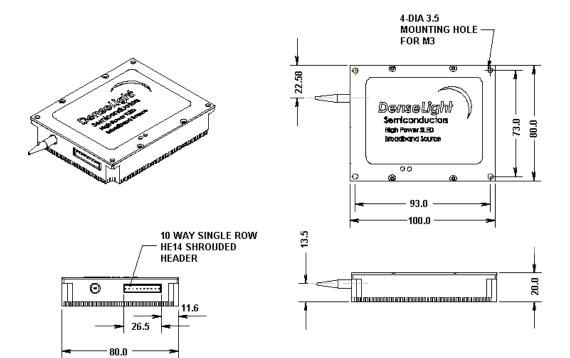
DL-BX10-CSxxxA 1/8

A. PRODUCT DESCRIPTION

The DenseLight DL-BX10-CSxxxxA is a series superluminescent light emitting diode (SLED) broadband source for fiber optic gyroscope, fiber optic sensor, optical test instrument and optical coherence tomography. It provides a stable light source over a wide wavelength range include O, E, S, C and L bands. It incorporates a high precision controller for high output level and stability of the superluminescent diodes output. This DL-BX10-CSxxxA consists of a built-in CW current driver, a temperature controller and a DenseLight standard 14-pin butterfly package CSxxxA.

B. FEATURES

- Optical power of 3 to 50mW
- 3dB spectral width of 20 to 85nm
- Wavelength availability 1260 to 1670nm
- Fiber pigtail output with FC/APC connector
- Integrated optical isolator (optional)
- Single +5V power supply (optional power adapter)
- Built-in current driver and temperature controller
- Operating temperature 0 to 70 °C (<0°C or >70°C extended range available)
- Over temperature protection and internal PCB temperature monitor
- Highly stable power output with active power control
- High wall-plug efficiency
- Compact size
- RoHS Compliance
- Telcordia Qualified SLED (GR-468-CORE)


C. APPLICATIONS

- Fiber Optic Gyroscope
- Optical Test Instrument
- Fiber Optic Sensors
- Fiber Optic Communications
- Optical Coherence Tomography
- Biomedical Imaging Device
- Clinical Healing Equipment

D. PHYSICAL DIMENSIONS AND MECHANICAL SPECIFICATION

Dimension:L100 x W80 x H20 mmEnclosure:Metal CaseOptical output:1 m SMF-28 fiber, 900um loose tube with FC/APCCooling:Air-cooled.Electronic interface:10-way single row HE14 shrouded header

E. PIN ASSIGMENT AND FUNCTION

HE14 Shrouded Header Pin Layout (Pin 1 near to SMF output)

Pin No.	Symbol	Power/Control /Monitor	Analog /Digital	Input /Output	Description
1	Pgnd	Р			Power Supply Ground
2	P _{GND}	Р			Power Supply Ground
3	V_{S}	Р			+5V d.c.
4	Vs	Р			+5V d.c.
5	OVRT	м	D	0	To report PCB over temperature and internal self-protection shutdown in operation (Active high)
6	T _{MON}	м	А	0	To monitor the temperature of PCB
7	PMON	м	А	0	To monitor the PD current in SLED
8	NC				
9	LO_EN	С	D	I	To enable Light output (active low or no connection to enable SLED light driver)
10	Agnd				Signal ground for control and monitor signals (internally shorted to P _{GND} via ferrite bead).

F. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Min	Max	Unit
Operating temperature (case)	T _{op}	l _{op}	0	70	°C
Operating Relative Humidity	RH	l _{op}		85	%
Storage temperature	T _{stg}	Unbiased	-40	85	°C
Input current	ls			6	А

G. ELECTRICAL SPECIFICATIONS¹

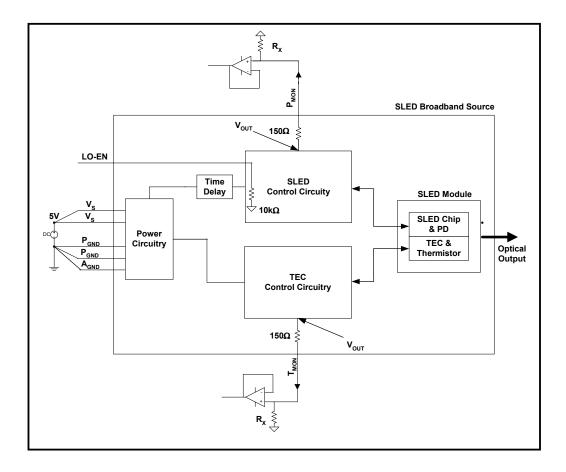
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Power Supply	Vs		4.75	5	5.5	V
Line Regulation					0.08	%
Input Current ²	ls				2	А
Total Power Consumption ²	Ps				10	W
Over Temperature	OVRT	Open-drain digital output with internal 1K pull-up to 3V for VH and 8mA current sink for VL				
	Vol	Normal	0		0.45	V
	V _{OH}	Over-temp	2.0		3.0	V
Internal PCB Temperature Monitor	Тмон	Analog voltage: T_{MON} = 395mV + (6.2mV/°C x T), T = PCB temperature in °C				mV
Voltage	Vout	R _x = infinite	0		2.5	V
Output Impedance	Rout			150		Ω
Source Current	I OUT	V _{OUT} = 2.5V			4	mA
Power Output Monitor	P _{MON}	Analog output: P _{MON} ~ 1.5V x (P _o / P _{rated}), P _o and P _{rated} in mW				V
Voltage	Vout	R _x = infinite	0		3.0	V
Output Impedance	Rout			150		Ω
Source Current	I _{OUT}	V _{OUT} 1 = 3.0V			4	mA
Light Output Enable	LO-EN	Digital input with internal 10K pull-down for light output enable at logic low or no connection				
	VIL	Normal	0		1	Normal
	VIH	Disable light output	2.5		3.3	Disable light output

 $^{1)}$ Unless otherwise specified. Tests are performed at T_{op} = 25°C

²⁾ Depending on product selection

H. OPTICAL SPECIFICATIONS

14-Pin Butterfly package CSxxxxA			Typ. spectrum modulation (dB)	
CS2079A	7	1260-1290	75	0.2
CS2184A	18	1270-1290	40	0.15
C\$3055A	5	1290-1330	50	0.15
C\$3089A	8	1290-1330	70	0.2
C\$3102A	10	1290-1330	30	0.15
C\$3152A	15	1290-1330	30	0.15
C\$3184A	18	1290-1330	42	0.15
C\$3159A	15	1290-1330	83	0.2
C\$3202A	20	1290-1330	30	0.2
C\$3307A	30	1290-1330	58	0.25
C\$3404A	40	1290-1330	43	0.25
C\$3452A	40	1290-1330	32	0.35
C\$3504A	50	1290-1330	38	0.3
CS35H5A	13	1330-1370	48	0.2
CS40H2A	15	1380-1420	35	0.2
CS43H4A	15	1415-1445	45	0.2
CS44H4A	15	1430-1470	45	0.2
CS48H5A	15	1460-1550	50	0.2
C\$5037A	3	1530-1570	60	0.15
C\$5077A	5	1530-1570	60	0.2
C\$5107A	8	1530-1570	60	0.2
C\$5103A	10	1530-1570	40	0.15
C\$5153A	15	1530-1570	40	0.2
C\$5169A	16	1530-1570	80	0.25
C\$5203A	20	1530-1570	40	0.25
C\$5254A	25	1530-1570	40	0.25
C\$5403A	35	1530-1570	40	0.35
CS58M7A	5	1560-1600	58	0.15
CS6107A	8	1580-1620	60	0.15
CS62M7A	8	1600-1630	65	0.15
CS65M5A	10	1635-1665	50	0.2


Parameter	Symbol	Min	Тур	Max	Unit
Output stability ⁽³⁾ 1 hour	Stb			± 0.03	dB
8 hour				± 0.1	dB

³⁾ After one hour of warm-up

The full optical performance of the DL-BX10-CSxxxxA can be found in DenseLight standard 14-pin Butterfly package CSxxxxA series individual specification. Please contact DenseLight Semiconductor Pte Ltd for further information.

I. APPLICATION INFORMATION

A. Typical Application Circuit

B. Power Supply Requirement and Connections

The power supply must be capable of supplying the maximum input current (Is) as given in the electrical specification table at all times during operation. This is because during transients (eg. switching on the SLED or with a sudden change in operating ambient temperature), the SLED broadband Source will require a momentary higher current from the power supply compared to its steady-state operation.

The two cables to the two V_s pins (Pin 3 and Pin 4) should be shorted at the positive terminal of the power supply as shown in the Typical Application Circuit. This is to divide the total current load to the SLED Broadband source between the two cables. Similarly, the two cables to the P_{GND} pins (Pin 1 and Pin 2), as well as the cable to the A_{GND} pin (Pin 10) should be shorted at the ground of the power supply terminal.

C. Selection of Resistance R_X for Analog Monitor Signals

In the Typical Application Circuit given, the function of R_x is to increase the current in the signal cables so as to reduce the effect of environmental noise on the analog monitor signals. In a noisy environment, the value of R_x is recommended to be 1k Ω . By choosing R_x to be 1k Ω , the actual voltage measured at the buffer output will be reduced due to loading effect, as compared to when R_x is infinite.

$$V_{\text{BUFFER OUTPUT}} = \frac{R_x}{R_x + 150} \times V_{\text{OUT}}$$

where R_X is resistance in Ω

In a non-noisy environment, the value of R_x can be increased to reduce loading effect. It is not recommended to choose R_x less than $1k\Omega$.

For further technical information, please refer to DenseLight Semiconductor BX10 SLED Broadband Source User Operation Manual.

J. REVISION CONTROL

Authorized Personnel	Rev	Description of Change	Date	
ОТК	А	Initial: Production Release	28 February 2007	
ОТК	OTK B Added Section I. Application Information (pg 7)		18 May 2007	